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APPROXIMATION OF (%, 3)-DIFFERENTIABLE FUNCTIONS
DEFINED ON THE REAL AXIS BY WEIERSTRASS OPERATORS

I. V. Kal’chuk UDC 517.5

We obtain asymptotic equalities for the upper bounds of approx1mat10ns by Weierstrass operators on the
functional classes Cw and Lw .1 in the metrics of the spaces C and L, respectively.

,00

1. Main Definitions

Let ﬁp, p > 1, be the set of functions f(-) defined on the entire real axis R and having the finite norm

a+2m Il,
sup < / If(t)\pdt> . pelloo),
ac€R a

esssup | f(t)], p =00,
teR

1£ll, =

and let C be the set of continuous functions defined on the real axis and having the finite norm
= max|f ()|
I£lle: = max| f (¢)]

Let 2 be the set of positive functions (¢) continuous for ¢ > 0 and satisfying the following conditions:

(i) (0) =
(ii) 1(t) is convex downwards on [1,00) and tlim P(t) =0;

(iii) ¢'(t) ='(t +0) is a function of bounded variation on [0, c0).

The subset of functions i € 2 for which

/w—dt<oo
t
1

is denoted by 2.
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If v € A and 3 € R, then the transform

=1|~

ba(t) = (t;8) =

/w coS <vt + ﬁ—;) dv (1)
0

is known to be summable on the entire real axis (see [1, p. 194]).
Let Lg denote the set of functions f € L; that can be represented in the following form for almost all
x € R:

e}

f@) = o+ [ oo+ Gt = A0+ (555) @) @

—0o0

where Ag is a certain constant, ¢ € L1, and the integral is understood as the limit of integrals taken over
increasing symmetric segments (see, e.g., [2, 3]). If f € Lw and ¢ € 91, where O is a certain subset of L1,

then one sets f € Lg‘ﬁ. The subsets of continuous functlons from LY 3 and Lg‘ﬁ are denoted by Cg and Cg‘ﬁ,
respectively. The function ¢(-) in (2) is called the (1), 3)-derivative of the function f(-) and is denoted by fg (+).
Let 5goo denote the set of functions f € ég’m in the case where 91 coincides with the unit ball in the space

L, ie.,

N=25yx = {gp € Loo: esssup |p(t)| < 1}
teR

and let E% ; denote the set of functions f € Eg‘ﬁ in the case where 91 is the unit ball in the space El, ie.,

W:Slz{cpezlz Mig}.

It was shown in [1, p. 169] that, in the case where ¢(-) is a 27-periodic function such that

s

[ a=o

—T

the classes L n, Lﬂ 1, and égoo turn into the known classes Lg‘ﬁ, Lg,lv and C’g” o> Tespectively.
Further, let

Qlo::{wEQl:0< <K< Vtzl},

t
n(t) —t

where

and 1~ is the function inverse to ).
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Now consider the collection of functions A = {)\U (ﬁ>} continuous for v > 0 and dependent on a real
o

parameter o. We associate every function f € ﬁz with the expression

Us(fi2;A) = Ag + /fg(w—kt %/w cos <vt+%> dvdt. 3)
% s

We approximate functions from the classes Zg , and éwm by operators of the form (3) in the case where

2
Ao (E) = e~ o . We denote these operators by W, (f;x), o € (0,00), and call them Weierstrass operators:
o

Wa(f;m):Ao—i—/fg(:z—i-t%/@D eocos<vt+%>dvdt o € (0,00). 4)
—oo 0

Using Proposition 1.1 from [1, p. 169], one can easily verify that, for a 27-periodic function f, the operators
Wy (f;z) coincide with the known Weierstrass integrals

o0
+ Ze_% akcoskx+bksinkx), oc>0
k=1

W, (f :70

(see. e.g., [4, p. 150]).
In the present paper, we investigate the asymptotic behavior of the quantities

v —
g(cﬁ,w,wa)é—f:gg 1) = Wo (5 )l

& (LEiWa), = sup |If(@) = Walfio)ly

rety,

as o — oo.
If a function h(c) = h(91;0) such that

EOGWs)y =h(o)+o(h(o)) for o— o0

is found in explicit form, then one says that the Nikol’skii—Kolmogorov problem is solved for a Weierstrass operator
on the class 91 in the metric of the space X.

Note that the Nikol’skii—-Kolmogorov problem for Weierstrass integrals on the classes Wj and W", the
Zygmund classes, and other classes was solved by Korovkin [5], Bausov [6, 7], Bugrov [8], Baskakov [9], and
Falaleev [10]. The results of the present paper are closely related to the results obtained by Kharkevych and
Kal’chuk in [11], where the Nikol’skii—-Kolmogorov problem was solved for Weierstrass integrals on the classes

Cg’oo and LZJ-
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Y

2. Estimation of Upper Bounds of Functions on the Classes C oo

by Their Weierstrass Operators

We set

T(v) = 1,(v,9) = (1 — 67”2> 15(\/_\/0;)), v >0, 5)

where 1 (v) is a function defined and continuous for all v > 0. In what follows, we assume that the function
¥ (v) is monotonically increasing and convex downwards on [0, 1] and has the continuous second derivative for
all v > 0 except the point v = 1. Denote the sets of functions ¢ € 2 and ¢ € 2y with the properties indicated
above by 2* and 2, respectively.

Theorem 1. Suppose that 1) € A5 NA' and the function g(v) = v*1)(v) is convex upwards or downwards
n [b,00), b > 1. Then the following equality holds for o — oo :

£ (ChiWs) , = vV AT, (©)
where A(T) is defined by the relation
—l/ /T cos(vt—i—ﬂ—)dv dt 7
T 2
—oo [0

and satisfies the estimate

Proof. 1t follows from Lemma 1 in [12] that, to prove equality (6), it suffices to show the summability of a
transform 7g(t) of the function 7(v) of the form

78(t) = %/7‘ cos <Ut + %) dv, )
0

i.e., to establish the convergence of integral (7).
According to Theorem 1 in [7, p. 24], for the convergence of integral (7) it is necessary and sufficient that the
following integrals be convergent:

o\mw

v|dr' (v)], /|v — 1| |dr'(v)|, (10)

P
sin —
2

v

00 1
@), rl—v) = r(+v)| o
EEES
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Let us estimate the first integral in (10). To this end, we divide the segment of integration into two parts:

[O, %] and [\/LE’%] (for o > 4b?).

1
Taking into account that 7”(v) > 0 on [0, —} and using the inequality

Vo

1—e ¥ <2

f— )

veE R, (12)

we get

7 5
/v ‘dT’(U)’ = (UT/(U) — T(U)) )
0

By virtue of equalities (21) and (27)—(29) from [11], the following estimate is true:

Zv\dr’(v)\ :O<1+m>, o — 0. (14)

Vo

Combining relations (13) and (14), we get

ju\df’(v)\:o<1+m), o — 00. (15)

Taking into account equality (34) from [11], we conclude that the following estimate holds for the second integral
in (10):

/\v —1||dr'(v)| = O(1). (16)

1 1
To estimate the first integral in (11), we divide the interval [0, c0) into two parts: [O —] and [T, oo> .
o

Vo
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1
Let v € [O, —] . Taking into account inequality (12) and the fact that the function (v) is monotonically

o

increasing on [0, 1], we obtain

@

)i + 0 <1+;>. (18)

/ 'Tiv”d”:aw(lﬁ) / vl ; o0 (Vo)
3

Combining equalities (17) and (18), we conclude that the following equality holds for the first integral in (11):

Let us show that the following estimate holds for the second integral:

1
/|T(1_v)_7—(1+v)|d7)20<1+%>7 o — 00. (20)

(

Using relation (5), we obtain

e $(/E( =)
7-(1—'0)— (1—6 (1-v) ) W, ’Ugl, (21)
_ (1402 ¥ (Vo(1 +0))
T(l + U) = (1 — € (1+v) ) W’ v Z —1. (22)

We represent the integral on the left-hand side of equality (20) as a sum of two integrals:

1 1-7= 1
/|7‘(1—v) ;T(l—l—v / / |7(1—v) ;T(l—i_v)‘dv. (23)
0

1__

Let us estimate the first term on the right-hand side of equality (23). To this end, we subtract and add the
expression e~ (1~ v)* _ e=(14v)* ynder the modulus sign in the integrand. As a result, we get
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S

|7(1—v) —T(1+U)|dvzo

o
S]
S]
U
<

[e=]

7(1—v)—7(1+v)+ e~(1=0)* _ g=(1+v)”
+ / | 4
v
0

It is obvious that

_ 1
PV g (1=0)? = (140)?

dv = 0O(1). (25)
v

0
We now estimate the second integral on the right-hand side of (24). By virtue of relations (21) and (22), we

have

——? _q_ o)
e~ I7v)7 = 1!}(\/3(1_0))7'(1 v), wv<l, (26)
(14) Y(Vo) _
)= 1/}(\/5(1_’_0))7'(1-1—1}), v>—1. (27)
We obtain
(1= 0) = 71+ v) 4 e~ 0 _ o=
/ dv
v
0
1—— 1__
W)  $(6) | dv
/ |7(1 — )| N )] / |7(1 4 v)| N R (28)
Using relations (15) and (16) and Lemma 2 in [7, p. 19], we get
17% 177
- ¢ o) d_ U(Vo) | dv
0/ Ol a0 0/ AR eV e
1—— 1__
_ (Vo (l —v)) — (Vo) [P (Vo(l+v)) —¢(Vo)|
- / T R / wivenro) )
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where

1

H(1) = |7(0)| + |7(1)] +/v\d7’(v)\ +/yv— 1] |d7'(v)] . (30)
0 1

Let us show that, for ¢ — oo, we have

1—-L

7
._ [V(Vo(l —v)) — (/o) v —
hei= [ T = 0u) Gh
5
_ [V(Vo(l+v)) — (/o) Y-
Ly = O/ At = 0(1), (32)

where O(1) is uniformly bounded in o.

1-¢(Vo)/d(Vo(l —v)) is bounded for all v € [9, 1

v
and, furthermore, in view of Theorem 3.12.1 in [13, p. 161], we have

1
0<f<l-—

) =

Indeed, the function

O 0 YAV ) WOV A O R
o v NGRS

Thus, I » = O(1) for ¢ — oo.
Passing to the estimation of the integral /5 ,, we note that

1

-7
I $(V7) — % (V7 (1+0))
bo < Save 1) 0/ I

v.
v

Changing the variable u = /o (1 + v), we get

S A 1 e — v ()
I“%(M—l)f u— o du<w(2ﬁ—1)1 u-vo %

Applying Lemma 3.5.5 from [14, p. 97] and Theorem 3.16.1 from [13, p. 175] to the right-hand side of the last
inequality, we obtain

5 o EWE) _ Kab(va)

< < < Ks.

205 o —1) = 9(2v0)

Thus, equalities (31) and (32) are true.
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Combining relations (28)—(32), we get

1—-L
Vo r(1 —v) = 7(1 4 0) 4+ e~ 1) — e=(14+v)’

/ . dv = H(7)O(1). (33)
0

According to (15) and (16), the following estimate holds for the quantity H (7) defined by (30):

H(r) =0 (1 + W) (34)

Using relations (24), (25), (33), and (34), we obtain

S

|7(1 —v) —7(1 +v)|

dv:O<1+ ! ) (35)

o

Let us estimate the second term on the right-hand side of (23). To this end, we subtract and add the quantity

Y(Vo(l—v)) <e—(1—v)2 N 6—(1+v)2)
¥(1)

under the modulus sign of the integrand and take into account that the function ¢ (/o (1 —v)) is monotonically

1
decreasingon |1 — —,1|. As aresult, we get
Vo
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‘e—ml—vﬁ _ o= (14v)?

IA
H\}—‘
4

dv
=75
1 T(l —’U) —T(1+U)+ w(\/g(rll_v)) (6 (1-v) —(14v) )
+/’ ¥(1) dv (36)
v
s
It is obvious that
(1—-v)* _ (1+v
/‘e i +|mzom. (37)
1__
Using relations (26) and (27) and Lemma 2 from [7, p. 19], we get
P(Vo(l=v) [ _(1—0)2  _(140)?
/1 T(l—U)—T(l—l—U)—f—T(e ! — e Ut )dv
v
Y
1
B 1 Y (Vo(l—v))
= / - (1—-v)—7(1+v) o)
Y
¥(Vo) ¥ (Vo)
(Grmtzay 0 gty ) [
1
¥ (Vo1 = 0) $(/3) | dv
< [ ool SRR T / T e e ) | o
1—% 1__
1*1})1/}(\/5) dv
/ TR A / et | | 9
1,_
where H (7) is defined by (30).
We estimate the first integral on the right-hand side of (38) as follows:
1
Y(Vo)|dv (- ¥(Jo) I _
/ ’1‘ o) | v~ <1 (D) >ln1_% -ow >
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1—

Since the function

18 bounded on [1 —

Y (Vo(l—v)Y(/a)|dv _
/ '1 -0 = =0(1). (40)

¥ (Vo(l+v))

1
1—%

Using relations (38)—(40), we obtain

N V(Vo(l=v) /102 (140)

L lr(l—v)—7(14v)+ ————— (e €

/ wil) ( ) dv = H(1)O(1). 41)
e

Taking into account relations (36), (37), and (41) and estimate (34), we get

v

/1|T(1‘”>‘T<1+”)’dvzo<1+ ! ) (42)

1-75

Combining relations (35) and (42), we arrive at equality (20).

Using inequalities (2.14) and (2.15) from [7, p. 24] and relations (19), (20), and (34), we obtain relation (8).
Theorem 1 is proved.

Theorem 1 yields the following statements:

Corollary 1. If the conditions of Theorem 1 are satisfied, sin %T #0, and tlim a(t) = oo, where

¥(t)

at) = ———, (43)

O = o
then the following asymptotic equality holds as o — o0 :

~ 2 7

& (Cg)’oo; Wg)c = sin% / —1/15:)) dv+ O (w(\/g)) ) (44)
Nz

Examples of functions that satisfy the conditions of Corollary 1 are the functions ¢ € 2A* that have the
following form on the interval [1,00):

where o« > 1 and K > 0.
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Corollary 2. Suppose that 1 € 21§, sin ﬂ%r £ 0, the function v*1)(v) is convex upwards or downwards on
the interval [b,00), b> 1, and

lim v%(v) = oo,
v—00

NG
1

Ulirgom /vw(v)dvzoo.

Then the following asymptotic equality holds as o — o0 :

NG
= / v(v)dv + O (Y(v0)) . (45)

g
1

. B
S1in ——

S(Gg»oo;wff)c: . 2

™

Examples of functions that satisfy the conditions of Corollary 2 are the functions i € 2A* that have the
following form for v > 1:

1
Yv) = v—21na(v—|—K), K>0, a>0,

Corollary 3. Suppose that 1 € U, sin %T # 0, the function v*1)(v) is convex downwards on the interval
[b,00), b>1, and

lim v*)(v) = K < oo,

V—00

Na
lim /mﬁ(v)dv = 00.

g—00

1
Then the following asymptotic equality holds as o — o0 :

NG

% /M/J(v)dv +0 (%) . (46)
1

Examples of functions 1 € 2* that satisfy Corollary 3 are the functions that have the following form for
v>1:

& <ag}m;Wa>c = % sinﬂ—ﬂ-

2

U(o) = (K +¢), o) =

_ K < a<l.
v v2In%*(v + K)’ >0, 0zax

Note that, under the conditions of Corollaries 1-3, equalities (44)—(46) give a solution of the Kolmogorov—
Nikol’skii problem for the Weierstrass operators W, on the classes Cgoo in the uniform metric.
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Let G* be the set of functions ¢ € 2* that satisfy the following condition: For an arbitrary constant K > 0

there exists a point vg = vo(K) > 1 such that, for v > vp, a function a(v) of the form (43) satisfies the
inequality

Theorem 2. Suppose that ¢ € G*, the function g(v) =

v2p(v) is convex downwards on [b,o0), b > 1,
and

/m/)(v)dv < 00. 47)
1

Then the following asymptotic equality holds as o0 — o0 :

Vo %)
(AN . [s@@)| ,+o %/ 2(t)dt + — /w() , 48)
fe

where f?)(z) is the second derivative of the function f(z).

Proof. We represent the function 7(v) defined by (5) in the form 7(v) = ¢(v) + p(v), where

_ vzw(\/&’) v
p(v) = (/o) > 0, (49)

(/o) v > 0. (50)

Let us verify the integrability of the transforms ¢g(t) and fig(t) of the functions ¢(v) and p(v) [see (9)]
We show the convergence of the integral

we obtain
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/gp(v) cos <Ut + %) dv
0
T
= / + / »(v) cos (Ut + ﬁ;) dv
© %

Nl

+7 " (v )COS<”H%>d +lw(1_\f)¢_(j;)l+0)COS(%H%)

1
o

whence
1

O/OOgo(v)cos <vt+%> dv S 0/\/:_/00 " (v)|dv +t2 \/_T/f\/_)

,_.

1 b
v) is convex downwards on each of the intervals |0, — ) and |—=, 00 | and is bounded on
Vo NG

The function ¢(

1
the interval <— —] Using the last inequality, we obtain

\/7 \/7

L
™
o(v) cos vt+—> US /—i—/—i—/ |" (v)|dv + =
O/ 2 AEA O+ 5 5

S

7 i K
Pl Ve

% 00 Vo
1 ,, d 1
_t_2 + cp(v) U+t—2
0 b 1
NG NG

b
Kl / 2 1
= P e0(7) tQIw(f)l/ (Pp) + doy'(e) 07 7(0)) do
_ K
REENCN)
Then
() B ]
p(v)cos [ vt + — | dv|dt = O , O — 00. (&)
[ |[een (5 )arar =0 (Z75)

[t=ve
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Since the function v2w(v) decreases on [b,c0) and is bounded on [1,b] and the function 1)(v) increases on

[0, 1], using relation (49) and equality (4.16) from [14, p. 59] we get

0o Vo
/ ) cos <vt + %) dv| dt = /
0 0

O'

/

VA Vo ti (o)
v ov
<o /+/ |<p(v)|dv+/ dvdt
(Vo)
0o L 0 b
Vo NG

K, 1 f / v (y/ov)dvdt.
0 b

Taking into account equalities (66)—(70) from [11], we can write the following estimate:

wnf |-

2w

t

(ot =0 (s ).

%F\S'v

Combining (52) and (53), we get
N

/ 0]2,( cos (w0422

By analogy, one can show that

= O(w&@) 7

0

—

SR P P S L R

0o
0

G

q

(52)

(53)

(54)

(55)
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Using relations (51), (54), and (55), we obtain

We now show the convergence of the integral

A(p) = % 7 7,@) cos (vt—i— %) dv| dt.
—oo [0

Integrating twice by parts and taking into account that

wu(0)=p/(0)=0  and lim p(v) = lim p'(v) =0,

we get
1
00 Vo 00
/,u(v) cos <Ut + %) dv = / + / w(v) cos <Ut + %) dv
0 0o L
7=
=
(77 8
=3 /+/ w' (v) cos (vt—i— ;) dv
0o L
e

ety (1)

whence

i 8 1 Ay 1 K
/u(v)cos <vt+§> dv §t—2 /+/ ’,u (v)’dv+t—20 (Vo) (56)
0 0

Let us estimate the integrals on the right-hand side of inequality (56). Taking into account that p”(v) < 0,

1
v E [0, %], we obtain

1

i Jlgn 20(1) Ly VE(-0) /a1
[ rao= - [artonn = 2005 (1-ent) - IS (1t - 0)

= au(e) &7
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According to inequality (79) in [11], the following estimate holds for the second integral on the right-hand side of

inequality (56):

r " K, Ky 2
[Welvs s s+ s / ety

1
NG

Using (56)—(58) and the relation

Vo Vo
I T / O 2 i, T / b
we obtain
00 Vo

/ /u(v) cos (vt—i— %) dv|dt =0 m /v21/1(v)dv :

[t|>7 10 1
Now consider
T T %

/7M(v)cos (vt+—> dv dt</ /+
0 10 0

Taking into account that the function (v) increases on [0, 1] and using the inequality

B

—v? 2 2
eV +v'—1<v’, vER,

we obtain

°\§\~

/

%
7”/1(1) vz v K
< wwao/ NI

According to relation (85) in [11], the following estimate is true:

T 1

0/ /u( cos (U?H—%) dv|dt = O qu%(u)dv .
e

1 [
/+/ wu(v) cos (vt—l— ﬁ;) dv| dt.
1
-

11(v) cos <vt+%>d dt Off,u(v)dvdt< Z/jzl)\;?) 0/ (e_”2+v2—1> dv

(58)

(59)

(60)

(61)

(62)

(63)

(64)
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Since 1 € G*, it is easy to verify that the function —u(v) = (7" 4 v2 — 1)4)(y/ov) monotonically decreases
beginning with a certain value v; > 1.

In view of the fact that the function —u(v) monotonically decreases on [v1,00), v; > 1, is nonnegative,
and vanishes as v — oo, we can use inequality (4.16) from [14, p. 59]. Using also inequality (62), we get

T

0/ ]ou(v) cos <vt + ﬁ2—ﬂ> dv|dt = 0/7r
< / 7(—u(v)) cos (vt + %) dv|dt
1

™

e[| cuteos (25 ol
0 v

H\g

(—(v)) cos <vt + %) dvl dt

_0/7r 1/ (—M(v))dvdtgw(\l/g)o/ 1/ V2 (y/ov)dudt. (65)

According to relation (93) in [11], we obtain the following estimate for the last integral in (65):

s U1+ 00
1
»(vov)dvdt = 1+ ) /vw(v)dv . (66)
Jo
Combining relations (65) and (66), we get
/7r 7 (v) cos (vt + ﬁ—) dv|ldt =0 |1+ 1 71}1/}(v)dv (67)
Ve 2 (V) /| |

Using (63), (64), (67), and (59), we deduce the following relation from (61):

/u(v) cos <vt + ﬁg) dv
0

™

[

o0

1

G
= —_———C U2 v)av 1 v v)av |.
=0 aﬁw<ﬁ)1/ v+ S % vldv]. (68
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By analogy, one can show that the following estimate is true:
oo

/ ZM cos (vt + 62 ) dvldt = O (W fUQw(v)dv + Uw(l\/g)\//g vw(v)dv). (69)

Combining relations (60), (68), and (69), we get

Vo o0
B 1 9 1
A(p)=0 (U\/&Mﬁ) l/v Y(v)dv + Uw(\/g)\//_mb(v)dv). (70)
Taking (5) into account, we deduce the following equality from (2) and (4):
@) =W (fa) = 0@) [ 15 (a4 2 ) & [rtorcos (o4 5 ) awa an
—0o0 0

Then

£ (@gm, W, )c = fsélg 1f () = Wo(f;2)l o

4 oo
- f:g;w ¢(\/E)_Z 3 (3: + %) %O/OO 7(v) cos (vt + %) dvdt )
= f:élf (Vo) 7 fy (9: + \%) Tp(t)dt
5,00 “o c
= fesg}z (Vo) /OO fy <:v + %) (@a(t) + fip(t)) dt
5,00 oo ¢
= f:g};m w(ﬁ)Z 3 <$ + %) Pp(t)dt ) + 0 (v(Vo)A(p)) . (72)
It is easy to verify that
7fﬁ (x+ %) Pa(t)d / i@+t / ¥ (v) cos <vt+%> dvdt = —fD(z), (73)

—0o0

where f(2)(z) is the second derivative of the function f(z).
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Substituting (73) into (72), we obtain

& (agm;WU)é =— SU}Z Hf H + O (v(vVo)A(p)), o — ooc. (74)
fGC

Equality (48) follows from (74) and (70).
Theorem 2 is proved.

Examples of functions for which Theorem 2 is true are the functions ) € A* that have the following form on
[1,00):

1

- K 1

1 1 1
Y(v) = —In%(w+ K), ¢(v)=—arctanv, ¢Y(v)=-—(K+e"), K>0, r>2, acR
v v v

3. Estimation of Upper Bounds of Functions from the Class ig,l
by Weierstrass Operators in the Integral Metric

By virtue of the lemma in [15] and Lemma 1 in [12], the following equality holds for the function 7(v) defined
by (5):

5(E§71;Wg)1 s(cﬁl,w) +0 (Vo) (0), o — oo,

where v (o) <0 and

v (o) =0 / dt |. (75)

Jor
22

/T( cos <vt + %) dv
0

The following theorem is true:

Theorem 3. Suppose that 1) € A5 NA' and the function g(v) = v*1)(v) is convex upwards or downwards
n [b,00), b > 1. Then the following equality holds as o — oo :

€ (Lng )1 = ¢(Vo)A(T) + O <§+ w(\/‘/;))

where A(T) is defined by equality (7) and satisfies estimate (8).

Theorem 3 follows from Theorem 1 and the estimate (see (48) in [11])

/ ZT( cos<vt—|—%>d dt = o<m+\%>7 s

Vo
[t|> 5+
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Corollary 4. If the conditions of Theorem I are satisfied, sin % # 0, and tlim a(t) = oo, where «(t) is
—0Q0
defined by (43), then the following asymptotic equality holds as 0 — o0 :

~ 2 B
U 1% — ;
& (L/B,].’ O-)Al = ; Sin 5

/ wi“) dv+ O (Y(/7)) . (76)
N

Corollary 5. Suppose that 1) € 25, sin % # 0, the function v*1)(v) is convex upwards or downwards on
[b,00), b>1, and

Nz
. 1
UILHC}OW 1/vzp(v)dv:oo.

Then the following asymptotic equality holds as o — o0 :

/o
1 / v(v)dy + O (¥(v/7)) 1)

o
1

O

~ 2
& (LEJ;WU)i = — |sin 5

s

Corollary 6. Suppose that 1) € 2, sinﬂ; # 0, the function v*(v) is convex downwards on [b, c),
b>1, and

lim v*)(v) = K < oo,

V—00

N
lim /m/J(v)dv = 00.

g—00

1

Then the following asymptotic equality holds as 0 — o0 :

1 v 1
- /m/)(v)dv—FO (;) . (78)

Note that, under the conditions of Corollaries 4-6, equalities (76)—(78) give a solution of the Kolmogorov—
Nikol’skii problem for the Weierstrass operators W, on the classes Lz ; in the integral metric.

& (zgvl; WU)i T
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