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APPROXIMATION OF (v, f)-DIFFERENTIABLE FUNCTIONS OF LOW SMOOTHNESS
BY BIHARMONIC POISSON INTEGRALS

K. M. Zhyhallo and Yu. I. Kharkevych UDC 517.5

We solve the Kolmogorov-Nikol’skii problem for biharmonic Poisson integrals on the classes of (v, B)-
differentiable periodic functions of low smoothness in the uniform metric.

1. Statement of the Problem and Historical Notes

Let L be the space of 2m-periodic summable functions with the norm

1l =1/l = / f(@)]de,

let L be the space of 2m-periodic, measurable, essentially bounded functions with the norm
1L = IIflloo = esstsuplf(l)l,
and let C be the space of 2m-periodic continuous functions with the norm
Ifllc = max[f()].
Assume that U(p; x) is a biharmonic function in the unit disk |pe’*| < 1, i.e., it is a solution of the equation
A%U(p:x) =0, €]
where A2U(p;x) = A(AU(p; x)) and

is the Laplace operator.
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Let B(p; f;x) denote the solution of Eq. (1) with the boundary conditions

aU(p; x)

o =0,  Ulp:x)lp=1 = f(x),

p=1
where f(x) is a summable 2 -periodic function.

It was shown in [1, p. 256] that the function B(p; f; x), which is called the biharmonic Poisson integral of
the function f(-), admits the following representation:

B(p; fx) = % [ G +x){% + [1 + %(1 —pz)] Pkcoskf}df-
i k=1

We use the function
|7 R — k
Bg(f;x)z—/f(z+x){§+z |:1+5(1—e_z/g)]e_k/‘scoskt}dt, §>0, p=e /3,
T
2 k=1

as the basis of a linear method for approximation of functions from the classes C /;p oo Introduced by Stepanets [2]
as follows:

Let ¥ (k) be an arbitrary fixed function of a natural argument, let 8 be a fixed real number, and let ay(f)
and by (f) be the Fourier coefficients of a function f. If

kX::l Wtk) (ak(f) cos (kx + %) + b (f) sin (kx + ?))

is the Fourier series of a function ¢ € L1, then ¢(-) is called the (y, 8)-derivative of f and is denoted by f ﬂv’ ).

The class of continuous functions f(-) for which || fl_(;/fIIoo <1 is denoted by C gf oo Note that, for ¥ (k) = k™",

r > 0, the classes C 800 coincide with the classes Wﬂ’ o and fﬂ'/’ = ﬂ(r) is the Weyl-Nagy (r, §)-derivative

(see [3] and [4, p.24]). If, in addition, one has B = r, r € N, then fﬂw is the rth-order derivative of f, and

C [;h o are the well-known Sobolev classes W,.
Following Stepanets (see [4, p.93] and [5 p. 195]), we denote by It the set of positive, continuous, convex-
downward functions ¥ (1), u > 1, such that

Jm v =o.

Let 9 denote the subset of functions ¥ € M that satisfy the condition

/@dt < 00.
1



1822 K. M. ZHYHALLO AND YU. I. KHARKEVYCH

We also consider the following subset of )t (see, e.g., [5, p. 160]):

smo={we5m:0< <KVtzl},

n)—t —

where
00 =i =y~ (3v0)).

¥~ is the function inverse to ¥, and K is a constant that may depend on V. Also denote smg = Mo NI
In the present work, we study the asymptotic behavior of the quantity

£(CloiBs) o= sup IS = Bs(f)llc = sup s/l @
1eCs 0 1eCs 0

as § — oo.
If a function ¢(8§) = ¢(I1;6) such that

EMBs)x =@ () +o(p(d) for §—o00

is found in explicit form, then, following Stepanets [5, p. 198], we say that the Kolmogorov—Nikol’skii problem is
solved for a biharmonic Poisson integral on the class Jt in the metric of the space X.

Note that the Kolmogorov—Nikol’skii problem was solved on the class WolO by Kaniev [6] and Pych [7]. Ap-
proximation properties of biharmonic Poisson integrals on other classes of functions were also studied by Falaleev
[8], Amanov and Falaleev [9], Timan [1], Zhyhallo and Kharkevych [10-12], and Zastavnyi [13]. It should also be
noted that, in [12], the Kolmogorov—Nikol’skii problem was solved for biharmonic Poisson integrals on the classes
C /;'/' o in the metric of the space C in the case of functions ¥ (-) rapidly decreasing to zero. At the same time,
of special interest are approximation properties of biharmonic Poisson integrals on classes of (¥, 8)-differentiable
functions of low smoothness, i.e., functions ¥ (-) such that

o0

/uw(u)du = 0.

1
2. Some Estimates for Fourier-Type Integrals

Let A = {As (k)} be the set of functions of a natural argument depending on a parameter §, which is defined
onaset £po C R that has at least one limit point 8g, and let A5(0) =1 V§ € Ep. If § € N, then the numbers
Ags (k) are elements of an infinite rectangular matrix A = {/\](Cn)}, nk=0,1,..., )L(()n) =1, n € NU{0}, and
under the additional condition A,(Cn) = 0 for k > n, they are elements of an infinite triangular matrix. We assume
that {A5(k)} possesses the following property: For any function f € L; and any fixed § € Ep, the series

ao(f)
2

As(0) + Zkg(k) (ap(f)coskx + b (f)sinkx), &€ Ep,
k=1
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converges to a summable function Ug( f; x; A) in the metric of the space Lj. One says that, for a fixed § € Ex,
every set of functions of a natural argument A determines a linear operator Ug(A) that acts from L, into Lj.
In particular, for the biharmonic Poisson operator Bg, we have

k
As (k) = (1 +5 (1 - e—2/5)) e /8,

where § > 0 and §p = oo is a limit point of the set E 5.
Further, assume that the set A is determined by a summation function Ag(u), 0 < u < oo, such that

)Lg(k):k(g) and /\5(0):1 V8§ € Ep.

For the biharmonic Poisson integral, we set

k k
r(g(g):(l—)&(g(k))%, k=0,1,2,...,
so that
(1—[1+yu]e‘”)%, Ofufé,
() = y) = 3)
L Y (Bu) 1
(=D yule™) 0wz g
where

)
y=r@=01-e?"

and 1 (u) is a function defined and continuous for u > 1.
Prior to passing to the investigation of the behavior of a quantity & (C /g’ o Bg)c of the form (2), we prove

the following statements:

Lemma 1. If the Fourier transform
1
2(t) = %5(1) = —/f(u)cos (ut n ﬁ—”)du @)
b4 2

of a function t(-) of the form (3) is summable everywhere on the number axis, then

e(Chuibs) = v@am+0 |y [ Bl |, )

|t|=87/2
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where
Ar) = / (£5(0)] d1. ©)

Proof. Since, according to the conditions of Lemma 1, the Fourier transform 7(-) is summable everywhere on
the number axis, by analogy with [5, p. 183] one can easily verify that, for any function f € C /;// o the following
equality holds at any point x € R:

400
pfi0) = )= By(fin =) [ (34 §)tsar, 50, ™

Using relation (2) and taking into account the integral representation (7) and the fact that the class C [}30 o 18
invariant under the shift of arguments (see [4, p. 109]), we obtain

400
r\ .
£ (C/;poo;B(g) = sup |Y(§) / 1y (-) 2s(t)dt|.
’ ¢ fecy 8
,00 —00
Hence,
v® 1T 8
v v P
E(Cﬂ,oo’BS)C < - / /r(u)cos (ut + > )du dt. ()
On the other hand, for any function ¢¢ € L; such that
v
/(po(t)dt =0 and esssup |po(?)| < 1,
t
—TT

there exists a function f(x) = f(¢o;x) in the class C ;f o for which we have f ﬂv’ (x) = po(x). Therefore, there

exists a function f (¢) in the class C 800 for which

fﬂw(t) = sign/ 7(u) cos <u8t + '%T)du, t e (—g, %) O]
0
Furthermore, since
y®) | [ i g
~ t
& (Cép’oo;Bg)C > — / fﬁ'/’ (3) / 7(u) cos (ut + 77[) dudt|, (10)

—00 0
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taking (9) into account we get

+o00 [ee)
%8) / fﬂw (%)/r(u) cos (ut + ﬂ%)dudt
A o
/2
> 8y () / signt (18)7(¢8) dt| — ¥ (8) / |75(2)| dt
—/2 |t|=6m/2
+o00
=@ [ 0ldi +y0) an

where y(6) <0 and

ly@®)| =0 v(©) / |zs(1)| dt

|2|=87/2

Combining relations (8), (10), and (11), we obtain equality (5).
Lemma 1 is proved.

Note that a similar result for triangular matrices A, A](cn) =

0, k > n, was established for the classes W'Br o

by Telyakovskiy [14] and for the classes Cw’Oo by Rukasov in [15]. For infinite rectangular matrices A = {)&,(cn)},
n,k=0,1,..., on the classes W} 00" there is a known result obtained by Bausov [16].

In Lemma 1, one requires the summability of the transform 7(z) of a function 7(-) of the type (3) on the entire
real axis, i.e., the convergence of the integral A(t). According to Theorem 1 in [16], a necessary and sufficient
condition for this requirement to be satisfied is the convergence of the following integrals:

1/2 oo
/ uld ' ). / e — 1l )], (12)
0 1/2
[ele] 1
‘sin’B—n /—“(”)'du, /'T(l_”)_r(“r“)'du. (13)
2 u u
0 0

Lemma 2. If ¥ belongs to the set Em;) and the function g(u) = u?y(u) is convex either upward or
downward on [b,00), b > 1, then integrals (12) and (13), where t(-) is a function of the type (3), admit the
following estimates as § — 00

1/2

]
, _ 1
/ uldt'(u)| = O(l + —SZW(S) 1[W(u)a’u), (14)

0
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/w—MMﬂwn=oax (15)
1/2
T lew) L] L T L
T\U u
O/ ” du = 2579 3) 1/ugﬁ(u)a’u + W{[ ” du+ O 1+ m/w(u)du , (16)

1
[z = s,
0

u

8
1

1 11
Proof. Let us estimate the first integral in (12) on the intervals |:0; E] and |:§ §i| (for § > 2b). It follows

1
from relation (3) for u € [0, g] that

) o ()
VG ) =e"(—142y yu)ww).

) =e " (1—y+yu)

Note that
—14+2y—yu>0, uc |:0,—:|,
for sufficiently large §, and

l—y+yu>0

for 0 <y <1 and u > 0. Taking this into account, we conclude that the function t(u) is convex downward for

1
u € [0; §:| . Therefore, using the inequalities

1
y <1, 1—y<g, (18)
l—e™ —yue ™ < %—i—uz, u >0, (19)
one can easily verify that
1/6
K
dt’ < . 20
[zl = 5 0)
0

We set

t(u) =11(u) + o(u) + 3(u), u>

’

S| =
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where
2 1
T1(u): = (l—e_“—yue_“—%—u?) 1/1/0(((;4))’ (21)
_ uy(u)
(u) = 5 UG (22)
. u? ¥ (Su) 23
t3(u) := 2 v0) (23)
Then
1/2 1/2 1/2 1/2
[ wiavwi = [wiagol+ [ulagl+ [ ulanool 24)
178 178 178 178

Let us estimate the first integral on the right-hand side of (24). To this end, we first consider the following
function:

le u
—yue Tt — — — = 25
yue > T (25)

u

pu)=1—e"

It follows from the relations

W) =e™—ye ™ +yue ™ —u—1/8,

() =—e ™ 4+ 2ye ™ —yue ™ —1,

r(0) =0, 70 =1-y—1/§ <0,

—14+2y—yu<e*, wuel0,00),

that, for u > 0, we have
r(u) <0, 7' (u) <0, 7' (u) <0. (26)
Taking into account relation (26) and the fact that

u2
e_“fl—u+7, e_"zl—u,
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we get

u _ _
)| = —+~-—1+e ¥+ yue™
2 8
<ﬁ+z—u+£+ u—yu® + E
=5 5 ) Y Y 7/2

3

=@4+y+u&u+a—yw2+#%,

W)|=u+1/8—e™+ye™ —yue™

u2

—) —yu+ yuz

§u+1/8—1+u+y(1—u+ >

3
=(=14+y+1/8) +2(0—yp)u + Eyuz,

—u

()| =e™ —2ye™ + yue ™ + 1

<1=2y+2yu+yu+1=2-2y)+3yu.

This, by virtue of relation (18) and the inequality

|
-1 - < —,
By

yields

3

B < ou + ~u? +
u —u+ = —,
H 2t T T

3
+u+u2

7w < 3p ;

" ()| < % + 3u.

According to (21) and (25), the following relation holds for u % :
/ 8>y (Su) — 5|W’(5u)| —ng ) Y (Bu) }
d 2
aril = {imal =+ 2 0] A o S

27

(28)
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Taking this and (27) into account, we obtain

1/2 1/2 |
/uldrl(u)l_ ) / (mu +5u’+ u )SZW/’(Su)du
1/8 1/8
1/2 ) 1 12 )
w(g)l//s (352 + 8” + 2u )5|W Su)| du + — W(‘S)I/S (—u+3u )W(é’u)du.

Integrating the first integral on the right-hand side of the last inequality by parts, we get

1/2

’ 1 2 ) 1/2
/ uldzy(u)| < m (352 + SM + u )gw (Su) ,
1/6
1 172 8 7 1/2
+m1//8 (382 +8u + 5u )5W (Su)| du + —— ‘/’(5)1/8 ( u + 3u )W(Su)du. (29)

We also need the following statements:

Theorem 1’ [5, p. 161]. A function ¥ € I belongs to the set W if and only if the quantity

Y ()

. "0y =vy’ 0), 30
A AR (30)

at) =

satisfies the condition a(t) > K >0 V¢t > 1.

Theorem 2’ [5, p. 175]. In order that a function ¥ € IN belong to the set My, it is necessary and sufficient
that, for any fixed number ¢ > 1, there exist a constant K such that

IZ(E;)) <K forall t > 1.

In what follows, K and K; denote certain constants (generally speaking, different).
Using Theorem 1/, for any function ¥ € My we get

1/2 1/2

1M)/(ﬁw —u? + 5u )8}W(8u)\du_w(8)f(35—2+ ~u + 5u )w(su)du,

1/8 1/8
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Using relation (29), the last estimate, and Theorem 1’, we obtain

1/2 1/2
/ K2 K3 /
K
/ uldty(u)| < K1 + 56 + 2 6) Y (Su)du
1/6 1/6
1/2 1/2
4 KS 2
+ u“y(Su)du.
) v ] Y
1/8 1/6
Consider the integral
1/2 b/8  1/2
u Sudu—— / / u su)du, &> 2b.
o) / Gundu = S A2
1/6 b/§

Since the function g(u) = u?y (u) is bounded on [1,b] and convex for u > b > 1, we have

1/2 8/2
(5)1//874 ¥ Gu)du = ww) /u V)

! b 8/2
= 23 ey + leﬂ(u)du
839 (8) 1/ b/

b ]
5 _ 1
< 531#(5) (/+[)u Y(u)du = 0(1+—821ﬂ(8))'

Then, taking into account the inequality

1/2 1/2 1/2

1 1

= f W (Su)du < 3 / uy (Su)du < /uzw(Su)du,
1/8 1/8 1/8

and relations (31) and (32), we obtain

1/2

1
/u|dr{(u)| = 0(1 + m)

1/8

3D

(32)

(33)
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For u > 1/§, equality (22) yields

v (8)dty(u) = udy” (Su) + 2’ (Su), (34)
whence
1/2 1/2 1/2
/ uldth(u)| < b / w28y (Su)du + —— | u |y (8u)| du.
~ () 1P(5)
1/6 1/6 1/8

Integrating the first integral in the last inequality by parts and taking Theorems 1’ and 2 into account, we obtain

1/2 | s 1/2
/ 2 /
lmmmm§w@uwwnw+w@£ |y G0
K ks L7
+ 52¢2(5) + 81//(38)1//5 ¥ (Su)du = 0(1 + ml/w(u)du). (35)

1 b
Let us estimate the third term on the right-hand side of inequality (24) on each of the segments |:§ §:| and

/

b 1 dzz(u) . . . .
) , 8 > 2b. Using (23), we determine I Taking into account that the function ¥ (6u) is decreasing
u

and convex downward on the segment |: 5 8:| , we obtain
b/s b/b b/b b/s
1
/u|dfg(u)| < 76 [uw(8u)du+28[uzlx/f’(Su)ldu—l—Sz / w3y (Su)du | . (36)
1/6 1/ 1/ 1/8
. 1 b
Since ¥ (du) < ¥ (1) for u € |:§ gi| , we have
b/8 0 b/é K
¥
uyr (bu)du < udu = ———. (37
o | ve) 9 6)
1/8 1/8

Taking into account Theorem 1’ and relation (37), we obtain

b/é b/s

51 i
R Su)ld - .
ww)/ v/ Guldu < S |y Guydn "ﬁww>

1/8 1/8

(38)
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Integrating the third integral on the right-hand side of (36) by parts with regard for (37) and (38), we get

b/§
1/[5;) 1 //5 w3y (Su)du < % (39)
Combining relations (36)—(39), we obtain
b/
/uW%WHzO(ﬁéaﬁ. (40)
1/6

It follows from relation (23) and the convexity of the function g(u) for u > b, b > 1, that

1/2 1/2

/u|dr§(u)| = /udré(u) =

b/é b/é

1/2
b/é

(uTh() = T3()) |

1
=0<1+m). (41)

Therefore, according to relations (20), (24), (33), and (35) and equalities (40) and (41) for sufficiently large §,
equality (14) is true.
Let us estimate the second integral in (12). According to (3), for u € [1/8;00) we have

Y (8)dt' (u) = { (1=[1+yule™) 829" (Su) + 28 (e™ —ye™ + yue™) y/'(Su)

+ (—e™* +2ye " — yue™) W(Su)}du. (42)

Therefore,

/w—uwﬂWNS[uwﬂwn
/2

1/2 1

IA

ﬁ / u (1 —[1+yule ™) 8*y" (Su)du
1/2

+ szi) ue (1 —y + yu) |¢'(Su)| du

1/2

+ %l/fz ue ™ |—1+42y —yu| ¥ (Su)du.
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Further, taking into account that
l—[1+yule <1 and ue™(1—y+yu)y<K for u>0
and

y(du) <y (g) for ue [%, +oo) ,

one can verify that relation (15) holds as § — oo.
1 1
Let us estimate the first integral in (13) on the segments [O; g} , |:§’ 1i| , and [1,00). By virtue of (3) and
(19), we have

[ew v [ du_ K
rl L
[ =6 | GO T me )
0
Taking into account (3), (25), and (27), we get
e, 1] Lo L[ [Ew) K
T(u w(u 2
/ ” du — 200 /ut/f(Su)du— W / Y (Su)du| < m/ ” Y(0u)du < Ky + 2y 5)°
1/8 1/8 1/8 178
Hence,
1 ( ) 1 8 1 )
T(u
/ ” du = 2579 0) /mﬁ(u)du + 0(1 + m/lﬂ(u)du). (44)
1/6 1 1
Using equality (3) once again and taking into account that ¥ (6u) < ¥ (8) for u > 1, we get
[t 1 [y R G P
/Tdu_W(S)/ - du|§¢(8)/ - (e™ + yue™)du < K. (45)
1 § 1
Combining (43)—(45), we obtain relation (16).
Let us estimate the second integral in (13). We set
Asu) = [1 + uy@§)e™ = [1 Lo (1 — e—2/5)] e (46)
2
Then the function 7(-) defined by (3) takes the form
¥ (1) 1
(1—2As(u)) m OSMSE,
t(u) = 47
¥ (8u) 1
(I —2As(u)) 70 =t
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Using (47), we get

¥ (1)

1
(l—ks(l—u))m, l-s=u=l
t(1—u)= (48)
Y ((1 —u))
(I_AS(I_M))W’ MSI_E’
¥ (1) 1
(1—18(14‘”))W’ —151453—1,
t(14u) = (49)
Y (1 4 u)) 1
We represent the second integral in (13) as a sum of two integrals as follows:
1 1-1/8 1
[rumn ey, R, i,
u u u
0 0 1-1/8

Adding and subtracting the value Ag(1 —u) — A5(1 4+ u) under the modulus sign in the integrand of the first term
on the right-hand side of (50), we obtain

1-1/8 1-1/8
[ (=) — e+ 0], [ A5 —w) =AU+ w)|
u u
0 0
1-1/8
n / [t(1—u)—7(1 +u) +ukg(1—u)—)t5(1+u)|du' 51)
0

One can easily verify that the first integral on the right-hand side of inequality (51), where Ag(u) is a function of
the type (46), admits the following estimate:

1-1/8

/ L+ y(1—u) e — (1 +y(1 +u))e 7| du—“ = O(1). (52)
0

1
Furthermore, by virtue of relations (48) and (49), for u € |:O, 1-— —i| we have

)
_ (A
Ag(l —u) =1- mf(l — M),
As(l+u)y=1- L&r(l + u).

Y ((1 4 u))
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Then
1-1/8
du
/ [t(1 —u) —t(1 +u) + (As(1 —u) — As(1 +u))| ~
0
7 o) | " vo) |d
u u
=/ ”“‘“”P‘E@H?35'5+'!‘”“*””P_EEHIES'J' o

For the estimation of the integrals on the right-hand side of (53), we use statements established by Bausov in [16].

Definition 1’ [16]. Suppose that a function t(u) is defined on [0, 0), absolutely continuous, and such that
7(00) = 0. One says that t(u) belongs to a set £, if the definition of the derivative t’'(u) can be extended to the
points where it does not exist so that the following integrals exist:

1/2 [’}
/u|dr'(u)| and /|u—1||dr/(u)|.
0 1/2
Let
1/2 o0
11r(r)=|z(0)|+|r(1)|+fu\dr’(u)\Jr / lu—1]|d7' (w)|. (54)
0 1/2

Lemma 1" [16]. If t(u) belongs to &1, then |t(u)| < H(7).

Since the function 7(-) defined by (3) belongs to the set £;, we can use Lemma 1/, according to which

e v® | v |d
u u
!‘”“_””P_JEHT35'5+'!)”“+“”b_E6617§'J
i - —vel . 1 w60 +w) —ve)
—u)) — +u)) —
- o Of el e ] R

Following [17], we can prove that, for functions ¢ € Mg, both integrals on the right-hand side of (55) are of
order O(1) for § — oo, i.e., they are uniformly bounded with respect to §. Thus, it follows from (53) and (55)
that
1-1/8 J
u
/ |r(l —u)—t(1+u)+ As(1 —u) — As(1 +u)) |7 = H(t)0(1). (56)
0
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Moreover, for a quantity H(t) of the type (54), the following estimate holds by virtue of (3), (14), and (15):

8
H(t) = 0(1 + m[W(u)du), § — oo. 57
1

Comparing (51) with (52), (56), and (57), we conclude that

1-1/6 8
lt(l—u) —c(1+u)| , 1
1

0

Let us estimate the second term on the right-hand side of (50). We have

1 1
[t(1 —u) — (1 + u)| [As(1 —u) — Ag(1 4+ u)|
du = du
u u
1-1/6 1-1/6

1
+0 / |‘L’(1—u)—‘[(1+M)+)Lg(1—u)—)tg(1+u)|a;—u . (39
1-1/8

1
For u € |:1 3 1] , relations (48) and (49) yield

¥ (8) _ ¥ (8)
w(l)r(l—u), As(1+u) = 1—mt(l+u).

As(l—u)=1—

Hence, according to Lemma 1/, we get

]

1
/ [t(1—u) —t(1 +u) + Ag(1 —u) — As(1 + u)] %
1-1/

du

u

1
1-1/6

1 1
- () — v ) W51+ 1) — ¥ (3)
=H@O /W“’”*/ WGty

1-1/8 1-1/8

V) v ()
w(1-w) (1 - W) —rl+u) (1 TG+ u)))

(60)
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For § — oo, we have

/1 (1) -y )|

D du = 0(1),

1-1/8

/1 W61+ 1) — Y ©S)|

Gty  v=ow

1-1/8

where O(1) is a quantity uniformly bounded with respect to §. Therefore, taking into account that

1 1
As(1—u)—As(1
/ A (1 — ) u s(L+wl / |e_1+u_€_1_uH(l_u)e_m_y(l+u)e—1—u‘i_“: o(1)

1-1/8 1-1/8

and using relations (57), (59), and (60), we get

1 )
lt(l—w) —t(1+uw)| 1
/ y du = 0(1 + m / W(u)du), 5 — oo. (61)
1

1-1/8

By virtue of (58) and (61), equality (50) yields relation (17).
Theorem 2 is proved.

Thus, by virtue of Lemma 2 and Theorem 1 [16], we can conclude that an integral A(z) of the type (6) is
convergent.

3. Asymptotic Equalities for Upper Bounds of Deviations of Biharmonic Poisson Integrals
from Functions of the Classes C l;/, o

The statement below is the main result of the present paper.

Theorem 1. Suppose that € EUE;) and the function g(u) = u?y (u) is convex either upward or downward
on [b,00), b > 1. Then the following equality holds as § — oo

8

1 1
€ (Cg,,oo; BS)C =Y (0)A(r) + O 7 + 3 / uy(u)du |, (62)
1

where A(t) is defined by (6) and admits the following estimate:

8 0o
1 2 [y
(82w(8)1/uw(u)du+msf y du) +0<1+

1
A(r) = — sin'B—n
b4 2

)
1
82%(8)/10(14)(111). (63)
1
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Proof. 1t follows from Lemma 1 that equality (5) is true. Moreover, in view of relations (14)-(17) for A(z),

inequalities (2.14) and (2.15) from [16, p. 25] yield estimate (63).

Let us estimate the remainder on the right-hand side of (5). For this purpose, we represent the transform 7 ()

as follows:
| 1/8 oo
() = — / + / 7(u) cos (ut + 'B—ﬂ) du.
T 2
0 1/8

Integrating both integrals in (64) twice by parts and taking into account that t(0) = 0 and

lim t(u) = lim 7/(u) =0,
u—>00 Uu—>00

we obtain
r g : g
T _ 1 1\ . t T 1 ,/1 t T
/r(u)cos(ut+7)du = tr(g)sm(é, + ) )—I—tzr (S)COS(S + 2 )
0
. IB . 1/6 ﬂ
g T
- Z—ZT,(O) cos = — 3 / ”(u) cos (ut + 7) du,
0
T 1 /1 1 1
/ (u) cos (ut + '8771) du = —?r (E) sin (é + ,3771) — t—zr’ (E) cos (é + ,8771)
1/6
17 B
T
-3 ”(u) cos (ut+7) du.
1/6
Combining (65) and (66), we get
i g pr 1 [ g
4 1 b4 1 b4
/t(u) cos (ut + 7) du = —t—zt/(O) cos 5> / ”(u) cos (ut + 7) du
0 0
[ B
T
-5 7”(u) cos (ut + 7) du.
1/8
Since
vd)  y(@d)

T(O):(I_V)W<m,

(64)

(65)

(66)
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we have

1/6 1 [ele)

r p K 1 .
|/r(u)cos (ut—i-?n) du| < 250 (5) +t_2 /+ / +/ ‘r (u)}du. (67)
0 0 1/8

1

Let us estimate integrals on the right-hand side of (67). Taking into account that the function 7(u) is convex

1
downward for u € |:O; §i| and using inequalities (18), we obtain

1/68

1" _ 1
/ [t"(u)|du = O (—81#(8))' (68)
0
It follows from (3) and (21)—(23) that
1 1 1
f|r”(u)|du< / |7} (u)|du+/|f§’(u)|du+/|r (u)|du. (69)
178 1/8 1/8 1/8

Inequalities (27) and (28) yield
1
1 2 1 2
|r "(u)|du < (8) 382 U+ (Su + 2u 8y (Su)du
1/8 1/8

1

2
6] (352+5“+ S )S\w(Su)ldquw(é,)/( +3u)w(8u)du

1/8 1/8

Integrating the first integral on the right-hand side of the last inequality by parts and using Theorem 1’, we get

1
1 2 N
/|t (u)|du < 1//(8) (382 + 8M + u )81# (6u)

178 1/6

1

3 2 2 ,
+Wf (382+8u+3u )(SW (SM){dM

1/8

1
wi(s)l/g (2 + 3u) Y(fu)du < K1 +

K>
52y (8)
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1
3 / K4
— 5.(5) / ¥ (du)du + 5 6) / Y (Su)du
1/8 1/8
K : 1 ;
5 J—
+ WI/S uy (u)du = O(—(Szw((S) I/MW(u)du). (70)

Using relation (34), we obtain

1

1
Vi 1 1 /
/ltz(u)|du < m/u&p (8u)du+m/|w (Su)‘du

1/8 1/8 1/8

1
1 , 1 3 , B 1
:muw (a’u)\l/s—mfw(smdu_0(—8w(5)). (71)

1/6

Let us estimate the third integral in (69). For this purpose, we represent it as follows:

1 b/é 1
/Iré’(u)lduz /+/ |7} (u)|du, 8> b.
1/8 1/8  b/s

Then, by analogy with the proof of (36)—(40), one can easily verify that

b/§

1
/ |75 (u)|du = O(W), § — oo. (72)

1/8

Taking into account relation (23) and the fact that the function g(u) is convex on [b,o0), b > 1, we obtain

1 1
1
/ |75 (u)|du = / 3 (u)du| = 0(1 + W) (73)
b/8 b/s
Relations (69)—(73) yield
/|f”(”)|d" (8%8) Szlp(S)/uw(u)du) (74)

1/8
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Using relations (42), we obtain an estimate for the third integral on the right-hand side of (67). Thus,

" —u\ 2.4,/
1/|r (u)|du§m1/ 1—[1+yu]e )8W(8u)du

28 oo—u /
+W1/e (1—y + yuw) |y (5u)| du

1
+—— | e =142y —yu| ¥ (Su)du.
¥ (8)
1
Then, taking into account that

I—[1+yule™ <u, e*(I—y+yu)<K, and v(@u)<vy() for u>1,

one can easily verify that
o0
/ |7 (u)|du = O(1), & — oo. (75)

Combining (67), (68), (74), and (75), we get

) )
Br\ | 1 1 1
fr(u)cos (ut + 7) du| = 0(8¢(8) + 29 ) /uW(u)du)t—z.

0

Hence,

8
N 1 1
|75(2)|dt = O(SZW(S) + 59.6) lfulﬁ(u)du), § — oo.

|t|=87m/2

This and relation (5) yield equality (62).
Theorem 1 is proved.

Corollary 1. Suppose that the conditions of Theorem 1 are satisfied,

. B
= £,
sin 5 #

and

lim a(t) =

t—>0o0
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where a(t) is defined by (30). Then the following asymptotic equality is true:

. Bm
Sin —
2

E(CI;ICOO;B‘S)C - % u

/ V) 1w+ 0 (). §— oo
§

Examples of functions that satisfy the conditions of Corollary 1 are functions of the form

w(u)=m, a>1, K=>0.
Corollary 2. Suppose that  belongs to the set My,
. Br
sin ﬂ? #0,
the limit
Ji )

exists, the function u>y (u) is convex either upward or downward on [b,o0), b > 1, and
1 8
. 2 _ . —
ull)rrgou Y(u) = oo, 81520 —521ﬂ(5) /ulﬂ(u)du 00.
1

Then the following asymptotic equality is true:

]
sin'BTn SLZ/MW(u)du + 0 (@), &— oo.

1

(),

B,00’

Examples of functions that satisfy the conditions of Corollary 2 are functions of the form
1 o
Yyu)=—-h*u+K), K>0, ao>0.
u

Corollary 3. Suppose that W belongs to the set My,

Br

sin —
2

# 0,

the function u?vy (u) is convex downward on [b,o0), b > 1, and

8
lim u?y (1) = K < oo, lim /uw(u)du = oo.
U—00 §—>o00
1

(76)

(77)
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Then the following asymptotic equality is true:

8
1. Br| 1 1
E(CKOO;BS)ng 31n’8—‘8_2/uw(u)du+0(—), § — 0. (78)
1

2 52

Examples of functions that satisfy the conditions of Corollary 3 are the functions
1 1 —u 1,
Y(u) = —arctanu, Y@u)=—(K+e ™), yu)=—-h"u+K), K>0, -1<a=0.
U u u

In particular, if

1
1/’(”) = u_zv
then relation (78) yields
1 Br|Ind 1
2 . _ .
5(Wﬂ,OO’BS>C —; SIHT 8—2+0(8—2), 5§ — oo.

Note that, under the conditions of Corollaries 1-3, equalities (76)—(78) give a solution of the Kolmogorov—

Nikol’skii problem for biharmonic Poisson integrals on the classes C ép oo in the metric of the space C in the case
where the rate of convergence of the functions ¥ (-) to zero is low.

s
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